Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G213-G229, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366545

RESUMEN

The endocannabinoid system (ECS) is dysregulated in various liver diseases. Previously, we had shown that the major endocannabinoid 2-arachidonoyl glycerol (2-AG) promoted tumorigenesis of intrahepatic cholangiocarcinoma (ICC). However, biosynthesis regulation and clinical significance of 2-AG remain elusive. In the present study, we quantified 2-AG by gas chromatography/mass spectrometry (GC/MS) and showed that 2-AG was enriched in patients with ICC samples as well as in thioacetamide-induced orthotopic rat ICC model. Moreover, we found that diacylglycerol lipase ß (DAGLß) was the principal synthesizing enzyme of 2-AG that significantly upregulated in ICC. DAGLß promoted tumorigenesis and metastasis of ICC in vitro and in vivo and positively correlated with clinical stage and poor survival in patients with ICC. Functional studies showed that activator protein-1 (AP-1; heterodimers of c-Jun and FRA1) directly bound to the promoter and regulated transcription of DAGLß, which can be enhanced by lipopolysaccharide (LPS). miR-4516 was identified as the tumor-suppressing miRNA of ICC that can be significantly suppressed by LPS, 2-AG, or ectopic DAGLß overexpression. FRA1 and STAT3 were targets of miR-4516 and overexpression of miRNA-4516 significantly suppressed expression of FRA1, SATA3, and DAGLß. Expression of miRNA-4516 was negatively correlated with FRA1, SATA3, and DAGLß in patients with ICC samples. Our findings identify DAGLß as the principal synthesizing enzyme of 2-AG in ICC. DAGLß promotes oncogenesis and metastasis of ICC and is transcriptionally regulated by a novel AP-1/DAGLß/miR4516 feedforward circuitry.NEW & NOTEWORTHY Dysregulated endocannabinoid system (ECS) had been confirmed in various liver diseases. However, regulation and function of 2-arachidonoyl glycerol (2-AG) and diacylglycerol lipase ß (DAGLß) in intrahepatic cholangiocarcinoma (ICC) remain to be elucidated. Here, we demonstrated that 2-AG was enriched in ICC, and DAGLß was the principal synthesizing enzyme of 2-AG in ICC. DAGLß promotes tumorigenesis and metastasis in ICC via a novel activator protein-1 (AP-1)/DAGLß/miR4516 feedforward circuitry.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , Ratas , Animales , Factor de Transcripción AP-1/genética , Endocannabinoides , Lipoproteína Lipasa , Glicerol , Lipopolisacáridos , Colangiocarcinoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/metabolismo , Carcinogénesis , Línea Celular Tumoral
2.
Microorganisms ; 11(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36985230

RESUMEN

This study aimed to evaluate the effects of coconut oil and palm oil in milk replacer (MR) on the growth performance, blood lipids, rumen fermentation, rumen microbiota, and fatty acid profile of hepatic and muscle of suckling calves. Thirty-six Holstein male calves were randomly assigned to three treatments. Three milk replacers containing different fat sources were as follows: control group (CON, milk fat), coconut oil group (CCO, coconut oil powder as fat), and palm oil group (PLO, palm oil powder as fat). Calves were weighed and blood sampled at 14, 28, 42, and 56 days old, respectively, and the feed intake and fecal score were recorded daily. Fat sources in milk replacers had no effects on body weight, ADG, DMI, fecal score, or days of abnormal fecal in suckling calves among the three groups, while the PLO group tended to decrease starter intake compared with the other groups. Serum concentrations of TC, HDL-C, LDL-C, and VLDL-C in the CCO group increased compared with those of the CON group. Palm oil also decreased the serum GLU concentration of calves but had no effects on serum lipids compared with milk fat. Coconut oil or palm oil had no effects on rumen fermentation, rumen chyme enzyme activity, rumen bacterial community richness and diversity, and dominant phyla and genera when compared with milk fat. However, compared with the CON group, the CCO group increased the proportion of MCFAs and n-6 PUFAs, and decreased the proportion of UFAs and MUFAs in liver tissue, while the PLO group increased the proportion of PUFAs and decreased the proportion of n-3 PUFAs in liver tissue. In addition, compared with the CON group, the CCO group increased the proportion of MCFAs, and decreased the proportion of UFAs and n-3 PUFAs in longissimus dorsi, while the PLO group increased the proportion of PUFAs and decreased the proportion of n-3 PUFAs in longissimus dorsi. In conclusion, compared with milk fat, coconut oil or palm oil in MR had no effects on growth performance, rumen fermentation, and rumen microflora but significantly increased serum lipids concentration and changed some proportions of MCFAs and PUFAs in liver and longissimus dorsi in suckling calves. These results indicate that coconut oil or palm oil as the sole fat source for MRs has no adverse effect on calf rumen fermentation and rumen microbiota but has a detrimental effect on n-3 PUFAs deposition in the liver and longissimus dorsi muscle.

3.
Medicine (Baltimore) ; 102(7): e32823, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800633

RESUMEN

BACKGROUND: Cerebral atherosclerosis (CA) is a chronic disease caused by multiple infarcts and atrophy causing nerve degenerative syndrome. Ginkgo Folium (GF) and Forsythiae Fructus (FF) have shown positive effects on vascular protection, but their relationship with CA is unclear. This study aimed to identify the potential CA targets and mechanisms of action of GF-FF, using network pharmacology. OBJECTIVE: This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of GF-FF on CA. METHODS: Using the traditional Chinese medicine systems pharmacology database and analysis platform, components were screened and corresponding targets were predicted using boundary values and Swiss Target Prediction. Using Cytoscape 3.8.0, a network was established between GF-FF components and CA targets. We extracted disease genes and constructed a network of targets based on the protein-protein interaction networks functional enrichment analysis database. Using Metascape, the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes of the enriched targets were determined. AutoDock Vina was used to perform molecular docking. RESULTS: Twenty-three active ingredients of GF-FF were confirmed to treat CA, covering 109 targets, of which 48 were CA-related. Luteolin, bicuculline, sesamin, kaempferol, quercetin, and ginkgolide B were the vital active compounds, and EGFR, CYP2E1, CREB1, CYP19A1, PTGS2, PPARG, PPARA, ESR1, MMP9, MAPK14, MAPK8, and PLG were the major targets. The molecular docking showed that these compounds and targets exhibited good intercalation. These 48 protein targets produced effects on CA by modulating pathways such as "apoptosis-multiple species," "IL-17 signaling pathway," and "relaxin signaling pathway." CONCLUSIONS: As predicted by network pharmacology, GF-FF exerts anti-tumor effects through multiple components and targets for treatment of CA, providing new clinical ideas for CA treatment.


Asunto(s)
Medicamentos Herbarios Chinos , Ginkgo biloba , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Apoptosis , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
4.
Clin Transl Immunology ; 11(4): e1386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35474906

RESUMEN

Objective: Diabetic hepatocellular carcinoma (HCC) patients have high mortality and metastasis rates. Diabetic conditions promote neutrophil extracellular traps (NETs) generation, which mediates HCC metastasis and invasion. However, whether and how diabetes-induced NETs trigger HCC invasion is largely unknown. Here, we aimed to observe the effects of diabetes-induced NETs on HCC invasion and investigate mechanisms relevant to a DNA sensor cyclic GMP-AMP synthase (cGAS). Methods: Serum from diabetic patients and healthy individuals was collected. Human neutrophil-derived NETs were isolated for stimulating HCC cell invasion. Data from the SEER and TCGA databases were used for bioinformatics analysis. In HCC cells and allograft models, NETs-triggered invasion was observed. Results: Diabetic HCC patients had poorer survival than non-diabetic ones. Either diabetic serum or extracted NETs caused HCC invasion. Induction of diabetes or NETosis elicited HCC allograft invasion in nude mice. HCC cell invasion was attenuated by the treatment with DNase1. In TCGA_LIHC, an extracellular DNase DNASE1L3 was downregulated in tumor tissues, while function terms (the endocytic vesicle membrane, the NF-κB pathway and extracellular matrix disassembly) were enriched. DNASE1L3 knockdown in LO2 hepatocytes or H22 cell-derived allografts facilitated HCC invasion in NETotic or diabetic nude mice. Moreover, exposure of HCC cells to NETs upregulated cGAS and the non-canonical NF-κB pathway and induced expression of metastasis genes (MMP9 and SPP1). Both cGAS inhibitor and NF-κB RELB knockdown diminished HCC invasion caused by NETs DNA. Also, cGAS inhibitor was able to retard translocation of NF-κB RELB. Conclusion: Defective DNASE1L3 aggravates NETs DNA-triggered HCC invasion on diabetic conditions via cGAS and the non-canonical NF-κB pathway.

5.
IEEE Trans Cybern ; 52(5): 2968-2980, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33027012

RESUMEN

The multiplayer stochastic noncooperative tracking game (NTG) with conflicting target strategy and cooperative tracking game (CTG) with a common target strategy of the mean-field stochastic jump-diffusion (MFSJD) system with external disturbance is investigated in this study. Due to the mean (collective) behavior in the system dynamic and cost function, the designs of the NTG strategy and CTG strategy for target tracking of the MFSJD system are more difficult than the conventional stochastic system. By the proposed indirect method, the NTG and CTG strategy design problems are transformed into linear matrix inequalities (LMIs)-constrained multiobjective optimization problem (MOP) and LMIs-constrained single-objective optimization problem (SOP), respectively. The LMIs-constrained MOP could be solved effectively for all Nash equilibrium solutions of NTG at the Pareto front by the proposed LMIs-constrained multiobjective evolutionary algorithm (MOEA). Two simulation examples, including the share market allocation and network security strategies in cyber-social systems, are given to illustrate the design procedure and validate the effectiveness of the proposed LMI-constrained MOEA for all Nash equilibrium solutions of NTG strategies of the MFSJD system.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Algoritmos , Simulación por Computador , Humanos
6.
Artículo en Inglés | MEDLINE | ID: mdl-32520694

RESUMEN

BACKGROUND: Although the importance of mast cells in asthma has been studied, mast cellsinduced global changes in lungs are largely unknown. Data-driven identification contributes to discovering significant biomarkers or therapeutic targets, which are the basis of effective clinical medications. OBJECTIVE: This study aims to explore the effects of mast cells on gene expression in asthmatic lungs, and to assess the curative effects of inhaled budesonide (BUD). METHODS: Pulmonary gene expression in KitWsh mice with or without mast cell engraftment was analyzed with R software. Functional enrichment of Gene Ontology and KEGG was carried out through the DAVID online tool. Hub genes were identified with String and Cytoscape software. RESULTS: The array analyses showed that the mast cell engraftment enhanced inflammation/immune response, cytokine/chemokine signal, and monocyte/neutrophil/lymphocyte chemotaxis. Interleukin (IL)-6 was identified to be a significant hub gene with the highest interaction degree. Based on this, the effects of BUD were investigated on the aspects of anti-inflammation. BUD's treatment was found to reduce serum IL-6 content and pulmonary inflammation in ovalbumin-induced asthma rats. The treatment also downregulated beta-tryptase expression both in lung tissues and serum. Morphologically, the accumulation and degranulation of mast cells were significantly suppressed. Notably, the effects of BUD on inflammation and degranulation were comparable with Tranilast (a classic mast cell inhibitor), while a remarkable synergy was not observed. CONCLUSION: This study presented a unique pulmonary gene profile induced by mast cell engraftment, which could be reversed through blockage of mast cells or inhaled BUD.


Asunto(s)
Antiinflamatorios/administración & dosificación , Asma/tratamiento farmacológico , Budesonida/administración & dosificación , Análisis de Datos , Sistemas de Liberación de Medicamentos/métodos , Mastocitos/efectos de los fármacos , Administración por Inhalación , Animales , Antiasmáticos/administración & dosificación , Asma/inducido químicamente , Asma/genética , Asma/metabolismo , Sistemas de Liberación de Medicamentos/estadística & datos numéricos , Regulación de la Expresión Génica , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Mastocitos/metabolismo , Ratones , Ovalbúmina/toxicidad , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
7.
Front Pharmacol ; 11: 571143, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101029

RESUMEN

Metabolic reprogramming is a cancer hallmark. Although the reprogramming of central carbon has been well documented, the role of sulfur metabolism has been largely overlooked. Additionally, the effects of sulfur are sometimes contradictory in tumorigenesis. In this study, we aimed to investigate the gene expression profile in hepatocellular carcinoma (HCC) and the effects of reactive sulfur species (RSS) on HCC tumor cells. Furthermore, the cell imaging technology was applied to discover some potential anti-cancer compounds. Gene Set Enrichment Analysis (GSEA) of Gene Expression Omnibus (GEO) dataset (GSE102083) revealed that sulfur amino acid-related metabolism and vitamin B6 binding activity in HCC tissues were downregulated. Calculation of the interaction network identified nine hub genes, among which eight were validated by differential expression and survival analysis in the TCGA_LIHC cohort, and two (CSE and CBS) had the highest enrichment degree. The metabolomics analysis suggested that the hub genes were associated with RSS metabolism including H2S, H2S2, cystine, cysteine, homocysteine, cystathionine, and methionine. The cell viability assay demonstrated that H2S2 had significant anti-cancer effects in HCC SNU398 tumor cells. The cell imaging assay showed that treatment with H2S2 remarkably increased intracellular sulfane sulfur content. On this basis, the anti-cancer activity of some other sulfane sulfur compounds, such as DATS and DADS, was further verified. Lastly, according to the fact that HCC tumor cells preferentially take in cystine due to high expression of SLC7A11 (a cystine/glutamate transporter), persulfided cysteine precursor (PSCP) was tested for its sulfane sulfur release capability and found to selectively inhibit HCC tumor cell viability. Collectively, this study uncovered sulfur metabolism in HCC was reprogrammed, and provided a potential therapeutic strategy for HCC by donating sulfane sulfur.

8.
J Anim Sci Technol ; 62(4): 504-520, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32803183

RESUMEN

Proliferation of shrubs at the expense of native forage in pastures has been associated with large changes in dry-matter intake and dietary components for grazing ruminants. These changes can also affect the animals' physiology and metabolism. However, little information is available concerning the effect of pastoral-shrub grazing on the rumen bacterial community. To explore rumen bacteria composition in grazing yaks and the response of rumen bacteria to increasing shrub coverage in alpine meadows, 48 yak steers were randomly assigned to four pastures with shrub coverage of 0%, 5.4%, 11.3%, and 20.1% (referred as control, low, middle, and high, respectively), and ruminal fluid was collected from four yaks from each pasture group after 85 days. Rumen fermentation products were measured and microbiota composition determined using Ion S5TM XL sequencing of the 16S rRNA gene. Principal coordinates analysis (PCoA) and similarity analysis indicated that the degree of shrub coverage correlated with altered rumen bacterial composition of yaks grazing in alpine shrub meadows. At the phyla level, the relative abundance of Firmicutes in rumen increased with increasing shrub coverage, whereas the proportions of Bacteroidetes, Cyanobacteria and Verrucomicrobia decreased. Yaks grazing in the high shrub-coverage pasture had decreased species of the genus Prevotellaceae UCG-001, Lachnospiraceae XPB1014 group, Lachnospiraceae AC2044 group, Lachnospiraceae FCS020 group and Fretibacterium, but increased species of Christensenellaceae R-7 group, Ruminococcaceae NK4A214 group, Ruminococcus 1, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005 and Lachnospiraceae UCG-008. These variations can enhance the animals' utilization efficiencies of cellulose and hemicellulose from native forage. Meanwhile, yaks grazed in the high shrub-coverage pasture had increased concentrations of ammonia nitrogen (NH3-N) and branched-chain volatile fatty acids (isobutyrate and isovalerate) in rumen compared with yaks grazing in the pasture without shrubs. These results indicate that yaks grazing in a high shrub-coverage pasture may have improved dietary energy utilization and enhanced resistance to cold stress during the winter. Our findings provide evidence for the influence of shrub coverage on the rumen bacterial community of yaks grazing in alpine meadows as well as insights into the sustainable production of grazing yaks on lands with increasing shrub coverage on the Qinghai-Tibet Plateau.

9.
Cell Death Dis ; 11(6): 484, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32587264

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Artículo en Inglés | MEDLINE | ID: mdl-32473622

RESUMEN

BACKGROUND: Erectile dysfunction (ED) is a significant but underestimated complication during diabetes mellitus (DM). Currently, few special treatments are available clinically due to the lack of specific therapeutic targets. Genomic analysis can be helpful to find potential targets. In this study, the gene expression under diabetic ED condition was analyzed using a gene array, and the significance of the outcomes was evaluated through clinical data. METHODS: The expressions of 15923 genes were analyzed using R software. Differential expression genes (DEGs) were identified through the constructed volcano plot. The function enrichment of Gene Ontology (GO) and KEGG was screened with the DAVID online tool. The interaction between these DEGs was revealed through constructing a protein-protein interaction network and the hub genes were uncovered using the STRING and Cytoscape tool. Lastly, the data of diabetic ED patients were applied to verify the bioinformatics findings. RESULTS: The study showed that 75 genes in the rat penile tissues were upregulated, while 97 genes were downregulated on the diabetic ED condition. These genes were mainly involved in extracellular matrix composition, collagen fibril organization, as well as protein digestion & absorption. Additionally, insulin-related signaling pathways were affected. The clinical analysis indicated that insulin resistance was associated with the diabetic ED severity. Notably, the bioinformatics analysis also suggested that ferroptosis pathway was probably activated under the diabetic ED condition. CONCLUSION: The impaired protein synthesis induced by deficient insulin signaling is an important cause of the diabetic ED. The improvement of protein synthesis through restoring insulin function may be potentially useful for diabetic ED therapy.


Asunto(s)
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Disfunción Eréctil/genética , Disfunción Eréctil/metabolismo , Redes Reguladoras de Genes/fisiología , Pene/metabolismo , Animales , Diabetes Mellitus Experimental/patología , Disfunción Eréctil/patología , Humanos , Masculino , Pene/patología , Ratas , Ratas Endogámicas F344
11.
Front Oncol ; 10: 234, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195181

RESUMEN

Ammonium tetrathiomolybdate (ATTM) has been used in breast cancer therapy for copper chelation, as elevated copper promotes tumor growth. ATTM is also an identified H2S donor and endogenous H2S facilitates VitB12-induced S-adenosylmethionine (SAM) generation, which have been confirmed in m6A methylation and lung cancer development. The m6A modification was recently shown to participate in lung adenocarcinoma (LUAD) progression. These conflicting analyses of ATTM's anticancer vs. H2S's carcinogenesis suggest that H2S should not be ignored during LUAD's treatment with ATTM. This study was aimed to explore ATTM's effects on LUAD cells and mechanisms associated with H2S and m6A. It was found that treatment with ATTM inhibited cell growth at high concentrations, while enhanced cell growth at low concentrations in three LUAD cell lines (A549, HCC827, and PC9). However, another copper chelator triethylenetetramine, without H2S releasing activity, was not found to induce cell growth. Low ATTM concentrations also elevated m6A content in A549 cells. Analysis of differentially expressed genes in TCGA cohort indicated that m6A writer METTL3 and reader YTHDF1 were upregulated while eraser FTO was downregulated in LUAD tissues, consistent with the findings of protein expression in patient tissues. ATTM treatment of A549 cells significantly increased METTL3/14 and YTHDF1 while decreased FTO expression. Furthermore, inhibition of m6A with shMETTL3 RNA significantly attenuated eukaryotic translation initiation factor (eIF) expressions in A549 cells. Correlation analysis indicated that small nuclear ribonucleic protein PRPF6 was positively expressed with YTHDF1 in LUAD tissues. Knockdown of YTHDF1 partially blocked both basal and ATTM-induced PRPF6 expression, as well as A549 cell growth. Lastly, ATTM treatment not only raised intracellular H2S content but also upregulated H2S-producing enzymes. Exogenous H2S application mimicked ATTM's aforementioned effects, but the effects could be weakened by zinc-induced H2S scavenging. Collectively, H2S impedes ATTM-induced anticancer effects through YTHDF1-dependent PRPF6 m6A methylation in lung adenocarcinoma cells.

12.
Cell Death Dis ; 11(3): 170, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139669

RESUMEN

Ozone (O3) plays an extremely important role in airway inflammation by generating reactive oxygen species (ROS) including hydrogen peroxide, then promoting redox actions and causing oxidative stress. Evidences indicate that TRPC6 (canonical transient receptor potential channel 6) is a redox-regulated Ca2+ permeable nonselective cation channel, but its role in the setting of oxidative stress-related airway inflammation remains unknown. Here, we found that both TRPC6-/- mice and mice pretreated with SAR7334, a potent TRPC6 inhibitor, were protected from O3-induced airway inflammatory responses. In vitro, both knockdown of TRPC6 expression with shRNA and TRPC6 blockage markedly attenuated the release of cytokines IL-6 and IL-8 induced by O3 or H2O2 in 16HBE cells (human bronchial epithelial cell line). Treatment with O3 or H2O2 enhanced TRPC6 protein expression in vivo and vitro. We also observed that TRPC6-dependent increase of intracellular Ca2+ concentration ([Ca2+]i) was triggered by H2O2, which consisted of the release from intracellular calcium store and the influx of extracellular Ca2+ and could be further strengthened by 6-h O3 exposure in both 16HBE cells and HBEpiCs (primary human bronchial epithelial cells). Moreover, we confirmed that the activation of MAPK signals (ERK1/2, p38, JNK) was required for the inflammatory response induced by O3 or H2O2 while only the phosphorylation of ERK pathway was diminished in the TRPC6-knockdown situation. These results demonstrate that oxidative stress regulates TRPC6-mediated Ca2+ cascade, which leads to the activation of ERK pathway and inflammation and could become a potential target to treat oxidative stress-associated airway inflammatory diseases.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo/efectos de los fármacos , Canal Catiónico TRPC6/genética , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Células Epiteliales/metabolismo , Humanos , Inflamación/inducido químicamente , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Canal Catiónico TRPC6/efectos de los fármacos
13.
Antioxid Redox Signal ; 33(15): 1092-1114, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547682

RESUMEN

Significance: S-Persulfidation generates persulfide adducts (RSSH) on both small molecules and proteins. This process is believed to be critical in the regulation of biological functions of reactive sulfur species such as H2S, as well as in signal transduction. S-Persulfidation also plays regulatory roles in human health and diseases. Recent Advances: Some mechanisms underlying the generation of low-molecular-weight persulfides and protein S-persulfidation in living organisms have been uncovered. Some methods for the specific delivery of persulfides and the detection of persulfides in biological systems have been developed. These advances help to pave the road to better understand the functions of S-persulfidation. Critical Issues: Persulfides are highly reactive and unstable. Currently, their identification relies on trapping them by S-alkylation, but this is not always reliable due to rapid sulfur exchange reactions. Therefore, the presence, identity, and fates of persulfides in biological environments are sometimes difficult to track. Future Directions: Further understanding the fundamental chemistry/biochemistry of persulfides and development of more reliable detection methods are needed. S-Persulfidation in specific protein targets is essential in organismal physiological health and human disease states. Besides cardiovascular and neuronal systems, the roles of persulfidation in other systems need to be further explored. Contradictory results of persulfidation in biology, especially in cancer, need to be clarified.


Asunto(s)
Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Sulfuros/química , Sulfuros/metabolismo , Susceptibilidad a Enfermedades , Homeostasis , Humanos
14.
Animals (Basel) ; 9(11)2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752155

RESUMEN

Although flavonoids or yeast have been used as feed additives to improve the production efficiency and health of adult cattle, little information is available on their effects on rumen fermentation in calves. The objective of this study was to investigate the effects of feed supplementation with mulberry leaf flavonoids and Candida tropicalis on performance, blood parameters, and rumen fermentation characteristics during pre-weaning and post-weaning periods. Forty-eight Holstein calves were used in a four-groups trial and were supplemented with (1) no yeast or flavonoids (CON), (2) active dry yeast (ADY; C. tropicalis, 5.0 × 109 CFU/d), (3) flavonoids (FLA; 3 g/d), or (4) yeast and flavonoids (YF; C. tropicalis, 5.0 × 109 CFU/d; flavonoids, 3 g/d). The feeding strategy was as follows: milk replacer was offered at 12% of body weight in two meals per calf each day at age 21 d, and a gradual weaning process was adopted at age 50 to 56 days. Data of daily feed intake, body weight, and serum and rumen fermentation parameters were obtained at 28, 42, 56, and 80 d ages, respectively. A significant time effect and interaction between treatment and time was found for average daily gain, feed efficiency, total volatile fatty acid concentration, and proportion of propionate in calves (p < 0.05). Average daily gain and feed efficiency increased during post-weaning and overall periods for calves in FLA and YF groups compared with CON and ADY groups (p < 0.05). A reduction of fecal scores with supplementation was found in FLA and YF groups (p < 0.05). Rumen fluid pH and ammonia nitrogen concentration remained constant across the groups, whereas total volatile fatty acid concentration and molar proportion of propionate significantly increased during the pre-weaning and overall periods in FLA and YF groups (p < 0.05). Calves in YF group had the highest serum concentrations of IgG and IgA during the overall period (p < 0.05). Additionally, serum ß-hydroxybutyric acid concentration was higher in ADY and FLA groups during the post-weaning period (p < 0.05). Supplementation with C. tropicalis showed little effect on increasing growth performance and health compared with flavonoids alone. Meanwhile, the combination of C. tropicalis and flavonoids was not synergistic with respect to improving health and rumen fermentation compared with use of flavonoids alone in pre- and post-weaning calves (p > 0.05).

15.
Org Lett ; 21(18): 7573-7576, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31539932

RESUMEN

A unique reaction between H2S and a selenenyl sulfide containing benzoate ester template was discovered. This reaction could be specifically triggered by H2S and lead to ester bond cleavage. The reaction was not affected by the presence of thiols such as glutathione and cysteine. With this reaction, a series of fluorescent probes were synthesized and evaluated. The probes exhibited high sensitivity/selectivity for H2S in both buffers and cells.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Sulfuro de Hidrógeno/análisis , Imagen Óptica , Selenio/química , Sulfuros/química , Colorantes Fluorescentes/química , Células HeLa , Humanos , Estructura Molecular
16.
Angew Chem Int Ed Engl ; 58(45): 16067-16070, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31479578

RESUMEN

Thionitrous acid (HSNO), the smallest S-nitrosothiol, is emerging as a potential key intermediate in cellular redox regulation linking two signaling molecules H2 S and NO. However, the chemical biology of HSNO remains poorly understood. A major hurdle is the lack of methods for selective detection of HSNO in biological systems. Herein, we report the rational design, synthesis, and evaluation of the first fluorescent probe TAP-1 for HSNO detection. TAP-1 showed high selectivity and sensitivity to HSNO in aqueous media and cells, providing a useful tool for understanding the functions of HSNO in biology.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Sulfuro de Hidrógeno/química , Óxido Nítrico/química , S-Nitrosotioles/análisis , S-Nitrosotioles/metabolismo , Colorantes Fluorescentes/química , Células HeLa , Humanos , Estructura Molecular , Oxidación-Reducción
17.
Org Lett ; 21(14): 5685-5688, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31264875

RESUMEN

Persulfides are receiving increased attention due to their links to hydrogen sulfide (H2S) and hydrogen polysulfide (H2Sn). Their close analogues selenyl sulfides (RSeSHs), however, have limited literature precedent, and their reactivity and possible role in biology are largely unknown. Here, we devised an acyl selenyl sulfide template to study RSeSH chemistry. Their stability and reactivity toward amines/thiols were studied. These compounds can produce H2S or H2S2 under different conditions, suggesting that RSeSHs are possible intermediates.


Asunto(s)
Sulfuro de Hidrógeno/química , Compuestos de Organoselenio/química , Sulfuros/química , Aminas/química , Línea Celular , Humanos , Sulfuro de Hidrógeno/metabolismo , Imagen Molecular , Compuestos de Sulfhidrilo/química
18.
Angew Chem Int Ed Engl ; 58(32): 10898-10902, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31194894

RESUMEN

Hydrogen sulfide (H2 S) is an important signaling molecule whose up- and down-regulation have specific biological consequences. Although significant advances in H2 S up-regulation, by the development of H2 S donors, have been achieved in recent years, precise H2 S down-regulation is still challenging. The lack of potent/specific inhibitors for H2 S-producing enzymes contributes to this problem. We expect the development of H2 S scavengers is an alternative approach to address this problem. Since chemical sensors and scavengers of H2 S share the same criteria, we constructed a H2 S sensor database, which summarizes key parameters of reported sensors. Data-driven analysis led to the selection of 30 potential compounds. Further evaluation of these compounds identified a group of promising scavengers, based on the sulfonyl azide template. The efficiency of these scavengers in in vitro and in vivo experiments was demonstrated.


Asunto(s)
Depuradores de Radicales Libres/química , Sulfuro de Hidrógeno/análisis , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/farmacología , Células HeLa , Humanos , Sulfuro de Hidrógeno/antagonistas & inhibidores , Sulfuro de Hidrógeno/farmacología , Azul de Metileno/química , Ratones , Estructura Molecular , Relación Estructura-Actividad , Análisis de Supervivencia
19.
Anal Chem ; 91(9): 5646-5653, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30990019

RESUMEN

Optical imaging provides noninvasive powerful tools not only for better understanding the physiological and pathological roles of methylglyoxal (MGO) in living systems but also for potential clinical diagnosis of MGO-related diseases, such as diabetic complications. However, so far only very few "turn-on" MGO fluorescent sensors have been developed, and they are all based on the reaction between MGO and benzenediamines. Due to the possible reactions of benzenediamines with other cellular molecules, such as NO and FA, these sensors suffer from limited selectivity and potential deactivation in cells. Herein, we report a novel MGO recognition reaction using 2-aminoacetamide. The reaction between MGO and 2-aminoacetamide was found to be highly efficient and specific, with no interference from NO and FA in particular. This reaction was used to develop the first ratiometric fluorescent probe (CMFP) for MGO. We have proven that CMFP could detect MGO at physiological concentrations in both aqueous buffer and living cells with excellent selectivity and sensitivity. Furthermore, we successfully utilized CMFP to study intracellular MGO generation routes and evaluated MGO levels of clinic blood samples from healthy and diabetic patients. These results highlight the potential utility of this probe in both basic science research and clinical diagnosis.


Asunto(s)
Complicaciones de la Diabetes/sangre , Diabetes Mellitus/sangre , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Piruvaldehído/sangre , Espectrometría de Fluorescencia/métodos , Estudios de Casos y Controles , Supervivencia Celular , Humanos
20.
J Asian Nat Prod Res ; 21(4): 308-315, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30829053

RESUMEN

Three new diterpenoids, dumetoranes A (1) and B (2), melanocane B (3), together with four known ones including melanocane A (4), ent-15S,16-dihydroxypimar-8(14)-en-19-oic acid (5), ent-pimara-8(14),15-diene-19-oic acid (6), and ent-pimara-8(14),15-diene-19-ol (7) were obtained from the ethanol extract of the roots of Aralia dumetorum. Their structure elucidation was achieved by the methods of spectroscopic HRMS, IR, NMR, and by comparison with literature. The cytotoxicities of compounds 1-3 and 5 were assayed by in vitro MTT methods.


Asunto(s)
Aralia/química , Diterpenos/aislamiento & purificación , Diterpenos/química , Diterpenos/farmacología , Espectroscopía de Resonancia Magnética , Raíces de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...